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In this paper, vibration control of a rotating Euler}Bernoulli beam is considered. It is
assumed that the "xed}free elastic beam is attached to the servomotor which uses PD
control to achieve the desired angular rotation, at the same time, the shear force measured at
the root of the beam is used as a feedback to control the beam tip vibration. Mode
summation techniques and Laplace domain synthesis techniques are used to analyze the
system. Parametric transfer functions relating beam tip motion to the desired rotation and
beam rotation to the desired input rotation are obtained. One parameter is the frequency
ratio between the natural frequency of the beam and the frequency of the control system,
second parameter is the ratio between the shear force feedback gain and the control
damping. Stability conditions with respect to these parameters are given. The e!ect of these
parameters on the rotational motion and the beam tip vibration is discussed. Some values of
these parameters that make possible desired rotational motion with suppressed tip vibration
are suggested. Analysis and results of this work can also be applied to the bending strain
feedback and tip velocity feedback control of a rotating Euler}Bernoulli beam.

( 2000 Academic Press
1. INTRODUCTION

Recently, the problem of modelling and control of a rotating #exible beam has received
wide-spread attention in connection with the applications like #exible robot arms, rotor
blades and spacecraft with #exible appendages. Most of the studies have used
Euler}Bernoulli beam theory in their model. A review regarding modelling, design and
control of an Euler}Bernoulli beam-type manipulator has been presented by Book [1]. The
pinned}free Euler}Bernoulli beam with distributed sensors to investigate the generic
properties of the structural modelling pertinent to the structural control is studied by
Spector and Flasher [2]. Point-to-point position control of a #exible rotating beam is
performed by using Laplace domain synthesis techniques by Bhat et al. [3, 4]. Dynamic
modelling and optimal control of a rotating Euler}Bernoulli beam is studied by Zhu and
Mote [5]. A rotating Euler}Bernoulli beam with the dynamic boundary force and moment
applied at the tip of the beam was studied for the stability of the control by Morgul [6].
Recently, rotating Timoshenko beam equations for pinned}free and clamped}free cases
have been developed in the work of White and Heppler [7]. The rotating Timoshenko beam
with tip payload, including the e!ect of sti!ening is studied by Yuan and Hu [8]. In their
study, to achieve joint angle trajectory tracking with simultaneous suppression of elastic
vibrations, a non-linear controller was designed using input}output linearization and
elastic mode stabilization. Recently, a rotating Euler}Bernoulli beam with shear force
feedback control was investigated by Luo and Guo [9]. The primary concern was the
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stability analysis of the closed-loop equation. Some experiments were also conducted to
verify the analysis. To keep consistency with the theoretical discussions only vibration
suppression is considered, but the motor angular position control is ignored.

In this paper a rotating Euler}Bernoulli beam is considered as a dynamical system. Shear
force feedback is used to suppress the beam tip vibration. In addition to the work done by
Luo and Guo [9] rotational control of the beam is added. Mode summation techniques and
Laplace domain synthesis techniques are used to analyze the system. Parametric transfer
functions relating the tip motion to the desired rotation and also the beam rotation to the
desired rotation are obtained. One parameter is the frequency ratio between the natural
frequency of the beam and the frequency of the control system. A second parameter is the
ratio between the shear force feedback gain and the control damping. Stability conditions
are obtained with respect to these parameters.

2. MODELLING

Derivation of the equations of the dynamic model, which is a rotating Euler}Bernoulli
beam under "xed}free boundary conditions will not be discussed here; details can be found
in references [7, 8]. They have used Timoshenko beam theory which takes into account the
e!ect of shear, by neglecting shear, the equations will be reduced to the one for the
Euler}Bernoulli beam. The governing equations of the dynamic system are
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Here E is the modulus of elasticity, I is the area moment of inertia of the beam cross-section,
w is the beam de#ection measured with respect to the rotating frame, l is the length of the
beam, m is the mass per unit length, h is the rotational angle, J
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, n is the gear ratio between the beam rotational angle and the motor rotational

angle, q is the motor torque with respect to the beam axis. The sum of the orthogonal modes
is assumed as the solution to the equation (1) [11];
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Here u
i
is the ith natural frequency of the beam. After substituting the assumed solution

into equation (1) and using orthogonality conditions, the following equation for the
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generalized co-ordinates can be obtained as:
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where a
i
is the mode participation factor. After taking Laplace transform of equation (6) the

resulting equation is
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By using the solution given in equation (3) the following equation is obtained for equation
(2):
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Here the beam is assumed to be uniform and rectangular. If the ratio between J
m
/n2 and J

b
is

assumed equal to one, g values for the "rst three natural frequencies of the "xed}free #exible
beam are g

1
"0)4853, g

2
"0)0124, g

3
"0)0016. Figure 1 shows the block diagram of the

servomotor control system with the shear force feedback. From the diagram we can obtain
the Laplace transform of torque with respect to the beam axis as
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Here K
T

is the torque constant, R
a
is the armature coil resistance, h

d
is the desired angular

input, K
p

is the proportional gain, K
d
is the derivative gain, K

b
is the electromotive force

constant, and K is the shear force feedback gain. Generally, the armature coil inductance
¸
a
is much smaller than the armature coil resistance R

a
, that is why it is neglected. For the

time being, the solution is assumed for the "rst natural frequency of the beam, that is, i"1.
If we take Laplace transform of equation (8) and use equation (9), the resulting equation is
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Here the shear force feedback gain K, the proportional gain K
p

and the derivative gain
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d
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Figure 1. Block diagram of the servomotor control with shear force feedback.
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where KM
m

is the motor time constant. Now, one can write the Laplace transform of the
di!erential equations in matrix form given in equations (7) and (10) as
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From equation (12) one can derive the transfer functions relating the beam tip motion to the
desired rotation and the beam rotation to the desired rotation as follows:
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Generally, motor time constant KM
m

is much smaller than the control frequency u, so the
ratio KM

m
/u will be much smaller than 2f and can be ignored. Here o

i
is the frequency ratio,

u
1

is the "rst natural frequency of the beam, u is the control system frequency, f is the
control system damping, f

1
is de"ned as the damping ratio for the shear force feedback, and

c
1

is the ratio between these dampings.

3. ROOT LOCUS ANALYSIS

In the proceeding root locus analysis, the e!ect of g will be neglected and considered later.
To see the e!ect of the frequency ratio o

1
on the poles of the system, let us rearrange the

denominator of the transfer function or the characteristic equation of the control system
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given either in equations (13) or (14) such as
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In fact, these zeros are the rigid control system poles. Root loci of equation (17) are shown in
Figures 2}4. Plots are drawn for f"0)3, 0)5, and 0)7 respectively. In each "gure, root loci
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which is considered as a boundary value for o
1
. The control damping f"0)5 has also an

e!ect on the branching. When f'0)5, branches are inclined away from the imaginary axis,
for the values of f(0)5, branches are inclined toward the imaginary axis and at f"0)5,
branches are vertical and parallel to the imaginary axis.

Since one pair of the branches has a part which lies on the right side of the s plane, for
some values of o

1
the system will be unstable. The critical value of o

1
at which the branch
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crosses the imaginary axis is
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Then, for a selected value of c
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, in other words, for a selected value of the shear force
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is not neglected, stability conditions given with equations (22) and (23) can be
approximated with the following equations:
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4. RESPONSE ANALYSIS

Figures 5 and 6 show the responses of the beam rotational motion and beam tip vibration
to the step input respectively. The tip vibrational motion of the #exible beam is
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The results are obtained only for the "rst mode, the e!ect of the other modes will be
considered later. In the plots of Figures 5 and 6, control damping is chosen as f"0)7. In
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these plots while o
1
"o

b
"3)33, c

1
assumes three di!erent values. For c

1
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b
"2)33, one

pair of roots is close to the rigid system poles, but the other pair of roots has low-damping
and high-frequency component, hence the desired rotational motion is achieved but
rippling occurred, and the beam tip has also lightly damped vibration. The rotor locus for
this case is a solid line plot given in Figure 4. For c

1
"c

b
, roots are complex; their values are

close to the rigid system poles but with higher damping and frequency values and hence the
higher overshoot is obtained. The root locus for this case is the dash-dot line plot given in
Figure 4. For c

1
'c

b
, one pair of roots is closer to the imaginary axis than the other ones

and also have lower damping and higher frequency values than the rigid system poles, that
is why rotational motion and also beam tip motion has lightly damped vibration. The root
locus for this case is the dashed line plot given in Figure 4. Figures 7 and 8 show the step
responses of the system for the case in which while c

1
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, o
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assumes di!erent values. For
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, both the rotational motion and the beam tip motion has lightly damped vibration.
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the desired rotational motion with suppressed beam tip vibration can be obtained. To see
the e!ect of the other modes, the response to each individual mode can be calculated and
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summed up. For the second and third modes the following values should be used:
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Figure 9. Step response of the beam tip motion: f"0)7; o
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Figure 9 shows the step response of the system in which the "rst three modes are considered.
The e!ective mode is the "rst one as expected.

The foregoing analysis and results can also be used for the bending strain feedback, and
also for the tip velocity feedback. Since the bending strain is proportional to wR A (0, t) and the
tip velocity is proportional to wR (l, t), the de"nition of the gain constants will, respectively, be
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The rest of the analysis remains same.

5. CONCLUSION

A servomotor-driven rotating elastic beam is modelled and analyzed. The beam is
considered "xed-free and modelled as an Euler}Bernoulli beam. To achieve the desired
angular motion, PD control, and to suppress the beam tip vibration, the shear force
feedback is used. Mode summation techniques and Laplace domain synthesis techniques
are used for the analysis. Parametric transfer functions relating the beam tip motion to the
desired rotation, and the beam rotation to the desired rotation are obtained. One parameter
is the frequency ratio between the natural frequency of the beam and the frequency of the
control system, and the second parameter is the ratio between the shear force feedback
gain and the control damping. The system becomes unstable for certain values of these
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parameters. Conditions for the optimum control of the rotational motion as well as for
suppressing beam tip vibrations are derived and given as a function of these parameters.
Analysis and results are also equally valid for the bending strain feedback, and tip velocity
feedback control of the rotating Euler}Bernoulli beam.
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